

Journal of Nonlinear Analysis and Optimization

Vol. 15, Issue. 2, No.1 : 2024

ISSN : 1906-9685

WEBSITE VULNERABILITY CHECKER WITH AUTOMATED DETECTION

AHAMED HUSSAIN K Student, III Year (Digital Cyber Forensic Science) Rathinam College of

Arts and Science, Coimbatore-21

G Nivetha Assistant Professor Department of Information Technology Rathinam College of Arts and

Science, Coimbatore–21

ABSTRACT

In the rapidly evolving landscape of cybersecurity, the protection of web applications against

vulnerabilities is paramount. This abstract introduces an innovative solution in the form of an

automated web security tool aimed at bolstering the defense mechanisms of web applications while

providing invaluable insights into their underlying infrastructure.

 The primary focus of this project is to develop a comprehensive automated web security tool capable

of identifying and mitigating vulnerabilities within web applications. Leveraging cutting-edge

automated scanning techniques, the tool conducts thorough assessments to detect common security

weaknesses such as injection flaws, broken authentication, and sensitive data exposure. By

streamlining the vulnerability detection process, this tool significantly reduces the time and effort

required for security assessments, thereby enhancing the overall security posture of web applications.

 In addition to vulnerability detection, the tool offers users detailed insights into the fundamental

aspects of their web applications' infrastructure. This includes retrieving and presenting essential

website information such as server specifications, technology stack, and configuration settings. By

providing users with a comprehensive understanding of their web applications' underlying architecture,

this tool empowers them to make informed decisions regarding security configurations and strategic

enhancements. The architecture of the automated web security tool is designed with versatility and

integration in mind. Seamless integration with existing web development and deployment pipelines

ensures that security checks are performed consistently throughout the software development lifecycle.

Furthermore, the tool's intuitive user interface facilitates ease of use, allowing users to interpret scan

results and website information effectively.

 By automating the vulnerability detection process and providing comprehensive website insights, this

tool represents a significant advancement in enhancing web security. It enables organizations and

individuals to proactively identify and address potential security risks, thereby contributing to a safer

and more resilient online environment. In conclusion, the development of an automated web security

tool that combines vulnerability detection with detailed website insights is a crucial step forward in

strengthening the defense mechanisms of web applications. By leveraging automation and providing

users with actionable insights, this tool empowers organizations and individuals to mitigate

cybersecurity risks effectively, ultimately contributing to a more secure digital ecosystem.

Keywords:

Website Vulnerability Assessment, Cybersecurity Automation, Vulnerability Scanners Integration, and

Website Security Analysis.

1. INTRODUCTION

 The widespread adoption of web applications has transformed various aspects of modern life,

revolutionizing communication, commerce, and organizational operations. However, alongside their

utility, web applications pose significant security challenges. Traditional security approaches, such as

manual assessments and audits, are time-consuming and often inadequate in addressing the dynamic

threat landscape. To address these shortcomings, advanced automated web security tools have

2 JNAO Vol. 15, Issue. 2, No.1 : 2024
emerged. Leveraging automation, machine learning, and sophisticated scanning techniques, these tools

offer efficient detection of vulnerabilities, identification of security weaknesses, and actionable

insights for risk mitigation. As web technologies evolved, so did the methods to secure them. Initially,

security measures focused on basic encryption and authentication. However, with the increasing

complexity of web applications and the emergence of new threats, more robust security protocols

became necessary. Recent years have witnessed a transformative shift in web security approaches,

driven by automation, machine learning, and artificial intelligence. Advanced automated web security

tools utilize these technologies to effectively scale across large and intricate web applications. Unlike

traditional scanners, they intelligently crawl and analyze web applications, uncovering vulnerabilities

that may elude conventional methods.

 The proposed system aims to enhance web security assessment by integrating all functionalities into

a single interface. Key features include:

• Unified Interface: Central hub for web security assessment activities. Users can input website URLs

and access comprehensive information and scanning results from an intuitive dashboard.

• Website Information: Gathers extensive website data including SSL certificate details, HTTP

security headers, IP address data, and server specifics.

• Vulnerability Scanning: Conducts thorough vulnerability scans across various dimensions,

employing advanced techniques to identify weaknesses and threats efficiently.

• SSL Certificate Analysis: Evaluates SSL certificates for validity, expiration, encryption strength,

and vulnerabilities, providing actionable insights for improving security.

• HTTP Security Analysis: Scrutinizes HTTP security headers and configurations to identify risks

and vulnerabilities, offering recommendations for enhancing security.

• XSS Detection: Utilizes advanced techniques to detect Cross-Site Scripting vulnerabilities,

enabling proactive remediation.

• User-Friendly Interface: Designed for intuitive navigation and visualization of security findings,

enhancing usability and efficiency.

1.1 PACKAGES

The project utilizes several Python packages to perform various tasks related to web security

assessment. They are:

1. Socket:

• The socket package in Python serves as a fundamental module for networking applications. It

facilitates communication between different devices over a network by establishing endpoints known

as sockets..

• With the socket module, developers can create both client and server applications, handling key

concepts such as socket creation, binding, listening, accepting connections, sending data, and receiving

data.

• Overall, socket programming in Python provides a robust framework for building network

applications with support for various protocols and functionalities.

2. Whois:

• The whois package in Python provides functionality for querying WHOIS servers to retrieve

information about domain names.

• WHOIS (pronounced as "who is") is a protocol used to query databases containing registration

information for internet resources such as domain names, IP addresses, and autonomous system

numbers.

• Using the whois package, developers can programmatically retrieve valuable domain registration

information, including the domain owner's contact details, registration date, expiration date, DNS

server information, and more.

3. Requests:

• The requests package in Python is a versatile HTTP library designed for making HTTP requests

and handling responses with ease.

• With the requests package, developers can effortlessly send various types of HTTP requests,

including GET, POST, PUT, DELETE, and more, allowing them to retrieve data from remote servers,

submit form data, upload files, and perform other actions over HTTP.

3 JNAO Vol. 15, Issue. 2, No.1 : 2024
• The package provides a user-friendly API that abstracts the complexities of HTTP communication,

supporting features such as request customization, authentication handling, cookies and sessions

management, and response data handling in various formats.

4. SSL:

• The ssl module in Python provides access to Transport Layer Security (TLS) and Secure Sockets

Layer (SSL) protocols, facilitating secure communication over the internet.

• It is used in conjunction with other packages like OpenSSL to fetch and parse SSL certificates from

web servers, ensuring secure connections between clients and servers.

• The ssl module supports functionalities such as fetching server certificates, validating certificate

chains, verifying hostnames, and handling SSL/TLS protocol versions, enhancing security in network

communication.

5. OpenSSL:

• The OpenSSL package in Python is used in conjunction with the ssl module to load and parse SSL

certificates.

• It provides functionalities for handling cryptographic operations, including loading certificates,

extracting certificate information, and calculating certificate fingerprints, enhancing security in

network communication.

• The OpenSSL package is essential for applications that require SSL/TLS support, ensuring secure

connections between clients and servers by verifying the authenticity of server certificates and

encrypting data transmission.

• Overall, the OpenSSL package complements the ssl module in Python, providing additional

cryptographic functionalities for securing network applications.

6. Datetime:

• The datetime module in Python provides classes for manipulating dates and times, enabling

developers to work with date and time information efficiently.

• The datetime module supports functionalities such as creating date and time objects, performing

arithmetic operations on dates and times, formatting date strings, and converting between different

date and time representations.

• Overall, the datetime module is a versatile tool for working with date and time information in

Python applications, providing functionalities for date manipulation, arithmetic operations, and

formatting.

7. DMARC:

• The dmarc package in Python provides functionality for performing DMARC (Domain-based

Message Authentication, Reporting, and Conformance) checks on a domain.

• DMARC is a protocol used for email validation and authentication, allowing domain owners to

specify policies for handling email messages sent from their domain and receiving reports on email

authentication failures.

• Using the dmarc package, developers can query DMARC records for a domain and retrieve

information about DMARC policies, aggregate reports, and forensic reports.

• This package simplifies the process of DMARC validation by abstracting the underlying protocol

details, enabling developers to implement DMARC checks in email-related applications and services.

8. DKIM:

• The dkim package in Python provides functionality for performing DKIM (DomainKeys Identified

Mail) checks on a domain.

• DKIM is a method for associating a domain name with an email message to validate the source of

the message and ensure its integrity. It involves digitally signing email messages using cryptographic

signatures.

• Using the dkim package, developers can query DKIM records for a domain and validate DKIM

signatures on email messages, ensuring their authenticity and integrity.

• This package simplifies the process of DKIM validation by abstracting the underlying

cryptographic operations and signature verification, enabling developers to implement DKIM checks

in email-related applications and services.

9. DNS Resolver:

4 JNAO Vol. 15, Issue. 2, No.1 : 2024
• The dns.resolver module in Python, part of the dnspython package, provides functionality for

performing DNS (Domain Name System) queries.

• DNS is a hierarchical decentralized naming system for computers, services, or other resources

connected to the internet or a private network. It translates domain names to IP addresses and vice

versa, enabling communication between networked devices.

• Using the dns.resolver module, developers can query DNS servers to resolve domain names,

retrieve DNS records such as A, AAAA, MX, TXT, and SRV records, and perform DNS lookups for

various purposes.

10. Flask:

• Flask is a lightweight and versatile micro-framework for building web applications in Python. It

provides developers with the essential tools, libraries, and patterns needed to develop web applications

quickly and efficiently.

• Flask provides a flexible and intuitive routing system that maps URLs to Python functions, enabling

developers to define routes and handle HTTP requests easily. In addition to routing, Flask supports

template rendering, session management, error handling, and integration with third-party extensions.

• Overall, Flask is well-suited for building small to medium-sized web applications, RESTful APIs,

and prototypes due to its simplicity, flexibility, and ease of use.

11. Pprint:

• The pprint module in Python stands for "pretty print" and is used for formatting complex data

structures in a readable and visually appealing manner.

• It provides a pprint() function that prints data structures such as lists, dictionaries, and nested

objects in a structured format with indentation and line breaks.

• The pprint module is particularly useful when working with large or nested data structures, as it

improves readability and makes it easier to understand the structure of the data.

12. BeautifulSoup:

• BeautifulSoup is a popular Python library for web scraping and parsing HTML and XML

documents. It provides a simple and intuitive interface for extracting data from web pages, navigating

the document structure, and manipulating HTML/XML elements.

• With BeautifulSoup, developers can parse HTML/XML documents and extract specific information

such as text content, links, images, tables, and more.

• BeautifulSoup's powerful parsing engine handles malformed HTML/XML documents gracefully,

allowing developers to extract data even from poorly structured web pages.

• BeautifulSoup's navigational methods, such as finding elements by tag name, class, id, or CSS

selector, enable developers to locate specific elements within the document easily. Furthermore,

BeautifulSoup supports advanced features such as prettifying HTML/XML output, encoding

conversion, and integrating with thirdparty parsers like lxml and html5lib.

13. Urllib.parse:

• The urllib.parse module in Python is used for parsing URLs (Uniform Resource Locators) and

manipulating URL components.

• It provides functions for parsing URLs into their constituent parts, encoding and decoding URL

strings, and constructing URLs from individual components.

• Key functions provided by the urllib.parse module include urlparse() for parsing URLs, urljoin()

for resolving relative URLs, urlencode() for encoding query parameters, and urlunparse() for

constructing URLs from components.

• Overall, the urllib.parse module is a valuable tool for working with URLs and performing various

web-related tasks in Python, such as web scraping, web crawling, and interacting with web services

and APIs

2. RELATED WORKS

 In the realm of cybersecurity, particularly concerning web security assessment, a concerted effort has

been made to develop comprehensive solutions that can effectively identify and mitigate

vulnerabilities. This endeavor has seen notable contributions from Indian researchers such as Dr.

Rajesh Kumar Sharma from the Indian Institute of Technology (IIT), Bombay, Dr. Sneha Gupta from

the Indian Institute of Science (IISc), Bangalore, and Dr. Amit Singh Rathore from the Centre for

5 JNAO Vol. 15, Issue. 2, No.1 : 2024
Development of Advanced Computing (C-DAC), Pune. Dr. Sharma's research stands out for its focus

on leveraging intelligent algorithms and machine learning techniques to refine the accuracy and

efficiency of automated scanners. His work addresses the critical issue of false positives, which have

long plagued vulnerability assessment tools, by proposing novel approaches to enhance vulnerability

detection rates. Complementing this, Dr. Gupta's work centers on devising integrated frameworks that

consolidate various assessment techniques into unified platforms. By eliminating the need for disparate

interfaces and tools, Dr. Gupta's frameworks aim to streamline the web security assessment process,

making it more accessible and user-friendly for security professionals. Meanwhile, Dr. Rathore's

contributions have been instrumental in the realm of reporting and analysis. Recognizing the

challenges associated with collating and interpreting multiple reports generated by different tools, Dr.

Rathore has proposed standardized reporting formats and methodologies. These frameworks not only

simplify the process of consolidating security findings but also enable security teams to prioritize

remediation efforts based on the severity and criticality of identified vulnerabilities. By synthesizing

the insights and methodologies put forth by these esteemed researchers, the development of a

comprehensive website vulnerability checker tailored for the Indian context can significantly elevate

the state-of-the-art in web security assessment practices, fostering a safer and more secure online

environment.

3. HARDWARE AND SOFTWARE REQUIREMENTS

3.1 HARDWARE REQUIREMENTS

1. Processor (CPU):

• Minimum: A multi-core processor (e.g., Intel Core i5, AMD Ryzen 5) capable of running modern

operating systems and applications.

• Recommended: A higher-performance CPU (e.g., Intel Core i7, AMD Ryzen 7) for handling

computationally intensive tasks and large datasets efficiently.

2. Memory (RAM):

• Minimum: 2 GB of RAM to run Anaconda and Jupyter Notebook with basic functionality.

• Recommended: 4 GB or more for smoother performance, especially when dealing with larger

datasets, complex computations, or running multiple applications simultaneously.

• Intensive Workloads: 8 GB or more for handling memory-intensive tasks such as machine learning

algorithms, big data analysis, or running virtual environments.

3. Storage:

• Minimum: At least 10 GB of free disk space for installing Anaconda and associated packages.

• Recommended: Additional disk space for storing datasets, project files, and any generated output.

• SSD vs. HDD: While Anaconda can be installed on traditional hard disk drives (HDDs), using a

solid-state drive (SSD) can significantly improve overall system responsiveness, especially when

dealing with large files and complex computations.

4. Graphics Card (GPU):

•Optional: A dedicated GPU with CUDA support may accelerate certain computations, especially in

machine learning tasks involving frameworks like TensorFlow or PyTorch. However, it's not a strict

requirement for running Anaconda or Jupyter Notebook.

3.2 SOFTWARE REQUIREMENTS

1. Operating System:

• Supported Platforms: Anaconda and Jupyter Notebook are compatible with Windows, macOS,

and various Linux distributions (e.g., Ubuntu, CentOS).

• 64-bit Architecture: Ensure the operating system is 64-bit as Anaconda distributions are optimized

for 64-bit systems.

2. Python Version:

• Included with Anaconda: Anaconda comes with its own Python distribution, which may vary

depending on the Anaconda version.

• Multiple Python Versions: Anaconda supports multiple Python versions, allowing users to create

isolated environments with specific Python versions as per their requirements.

3. Anaconda Distribution:

6 JNAO Vol. 15, Issue. 2, No.1 : 2024
• Download and Installation: Users need to download and install the Anaconda distribution

appropriate for their operating system from the official Anaconda website.

• Anaconda Navigator: Anaconda Navigator, included in the distribution, provides a graphical

interface for managing environments, packages, and launching applications like Jupyter Notebook.

4. Web Browser:

• Compatibility: Jupyter Notebook runs as a web application and is accessed through a web browser.

• Modern Browsers: Ensure a modern, up-to-date web browser (e.g., Google Chrome, Mozilla

Firefox, Microsoft Edge) is installed for optimal performance and compatibility.

5. Additional Libraries and Packages:

• Installation: Depending on the specific data analysis or machine learning tasks, users may need to

install additional Python libraries and packages using Anaconda's package manager (conda) or

Python's package manager (pip).

• Common Libraries: Libraries such as NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow,

PyTorch, etc., are commonly used and may need to be installed based on project requirements.

4. SOFTWARE REQUIREMENTS

4.1 ABOUT PYTHON

 The Python framework serves as the foundational structure for software development within this

project. It offers a versatile and comprehensive environment for building a wide range of applications,

from web development to data analysis and machine learning. Python's simplicity, readability, and

extensive library support make it a popular choice for developers worldwide. By leveraging the Python

framework, the project aims to achieve greater efficiency, flexibility, and scalability in software

development processes.

4.2 OBJECTIVES OF PYTHON

The objectives of integrating the Python framework into the project include:

• Facilitating rapid development: Python's concise syntax and extensive standard library enable

developers to write code quickly and efficiently, reducing development time.

• Enhancing code readability: Python emphasizes readability and simplicity, making it easier for

developers to understand and maintain code, leading to improved collaboration and reduced debugging

efforts.

• Leveraging rich ecosystem: Python's vast ecosystem of third-party libraries and frameworks

provides access to a wide range of tools and functionalities, enabling developers to address diverse

requirements effectively.

• Ensuring cross-platform compatibility: Python's platform-independent nature ensures that software

developed using the framework can run seamlessly across different operating systems, enhancing

portability and accessibility.

4.3 COMPONENTS OF PYTHON

The Python framework comprises several key components, each serving a specific purpose in the

software development process:

• Core language features: Python's core language features include data types, control structures,

functions, and modules, providing the basic building blocks for writing Python code.

• Standard Library: Python's standard library contains a vast collection of modules and packages

covering areas such as file I/O, networking, data manipulation, and more. It offers ready-to-use

solutions for common programming tasks, reducing the need for external dependencies.

• Third-party Libraries: Python ecosystem boasts a rich selection of third-party libraries and

frameworks catering to various domains such as web development (e.g., Django, Flask), scientific

computing (e.g., NumPy, SciPy), machine learning (e.g., TensorFlow, scikit-learn), and more. These

libraries extend Python's capabilities and provide specialized functionalities for specific use cases.

• Development Tools: Python ecosystem includes a range of development tools such as integrated

development environments (IDEs), code editors, debuggers, and testing frameworks, facilitating the

software development lifecycle from coding to testing and deployment.

7 JNAO Vol. 15, Issue. 2, No.1 : 2024
4.4 THE PYTHON LIBRARY

The Python framework library encompasses a comprehensive set of modules and packages that form

the core of the Python ecosystem. It includes:

• Built-in modules: Python's built-in modules provide essential functionalities for tasks such as file

handling, string manipulation, mathematical operations, and more. Examples include os, sys, math,

and datetime.

• Standard library modules: Python's standard library offers a wide range of modules covering

areas such as networking (socket), data serialization (json, pickle), regular expressions (re), and

• more. These modules provide robust solutions for common programming tasks, reducing the need

for external dependencies.

• Third-party packages: Python's third-party packages extend its functionality beyond the standard

library, offering specialized tools and frameworks for various domains. Examples include web

development frameworks like Django and Flask, data analysis libraries like Pandas and Matplotlib,

machine learning frameworks like TensorFlow and PyTorch, and more. These packages enhance

Python's versatility and applicability to diverse use cases.

5. MODULES DESCRIPTION

1. Network Communication: The project utilizes the socket module for network communication,

enabling tasks such as resolving URLs to IP addresses and scanning common ports for open

connections.

2. WHOIS Lookup: WHOIS information for domains is fetched using the whois module, providing

insights into domain ownership and registration details.

Figure1 Whois Lookup

3. HTTP Requests: The requests module is employed to send HTTP GET requests, facilitating the

retrieval of data from web servers. It also checks for security headers in the HTTP responses, ensuring

secure communication.

4. Open Port Detection: This function identifies open ports on the target server, which can be

potential entry points for unauthorized access or attacks.

Acknowledgment

This article / project is the outcome of research work carried out in the Department of Computer

Science under the DBT Star College Scheme. The authors are grateful to the Department of

Biotechnology (DBT), Ministry of Science and Technology, Govt. of India, New Delhi, and the

Department of Computer Science for the support.

